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SOME PROBLEMS OF HEAT TRANSFER IN LIQUID-COOLED REACTORS
V.S.Osmachkin,
1. INTRODUCTION

The modern nuclear power reactors are highly forced. Large heat fluxes and specific power,
rigid limitations on the coolant and fuel elements temperatures demand knowledge of tempera-
ture distribution in the core with a high reliability.

The main problem in thermal reactor design is to prove reliably that the impermissible
coolant and fuel element temperatures will not be realizedat any reactor operational regimes.

Specific featuresof heat transfer problems in moder reactor technology are defined with
core arrangement, which for the most of power liquid cooled reactors is a set of assemblies
of canned cylindrical fuel elements. The knowledge of the flow pattern and heat transfer rate
is necessary for determination of the :emperature distrilution in such a complicated geometry .
In compact cores it needs to account for the effect of the axial heat flux variations on the

heat transfer coefficient. These problems are consideredin the paper.

2. TRANSPORT PROCFSSES IN TURBULF.NT FLOW

The motion of fluids in nuclear reactors is turbulent. Theoretical study of the processes
occurring in turbulent flows is very complicated.*Due to irregularity of turbulent motions it is
desirable to applicate statistical methods. llowever, the realization of such an approach in
all details is very difficult. Therefore,in practice semi-empirical phenomenological theories
are used. The object of these theories is to find some relations between mean and fluctuating
parts of the motion. On Prandtl’s mixing-length theory the velocity pulsations in a flat channel
can be presented as

ul~1 dU
y dy

where 1y — is a characteristic distance passed by the pulsations.
Let us derive a more exact formulation of Prandtl’s hypothesis. Introducing the suitable
Green functions, we can write the equations of motion for the turbulent fluctuations
du} gul U; 1 2ul
——-—+Uk—1 +u —-1-=——lgL+v :
P 09X

at ax; axy Bxﬁ
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That Green’s function is determined by the following equation

av
at

(o]

+(UV) Vo = vAVy = —8GF -7 Dot —d (2)

with the corresponding boundary conditions.
The function V,, describes the velocity distribution in liquid flow under an instantaneous
local disturbance.
Then equations (1) can be written as

S G N ) S | 3 ol _ ol uly arlad
ui(r,t)_fVo(r Tt )[P P +u ey —axk (uiuk—uiuk)] dr “dt (3)

Such a form of Eq (1) permits an iteration method to be applied. To obtain the first approxima-
tion formulas we may neglect in Eq. (3) all nonlinear terms and the pressure pulsations.
Then

1 ot tl) ar Ll (4)

Provided the width of the region, where the probability V, isnot zero, issmall compared with
that one, where significant change of the mean velocity occurs, Eq. (4) can be simplified.
Expanding the mean velocity gradient into a Taylor series near the point T and limiting to two

series tems, we obtain the approximate formulae for the velocity fluctuations

_ aU; (71 .__11-1132”1-_1111 1,1
uil(r,t)z ?x-;fu )V (r,r5t, t7)dT ~dt +-a;k—a;-eflr—r e"k( V(T il KR )d— dt

(5)
In the turbulent core near the flow symmetry axis the first mean velocity derivatives are small.
Therefore the velocity pulsational components are determined by the second items in Eq.(5), i.e.
are dependent upon the second mean velocity derivatives. Conversely, far from the flow sym-
metry axis the first items of the equation are large. In this region
Ui

U
ul (7 0 = o .fu FLdyv, @ rh el - = (6)

Note, that the quantity
Yl @y (7L dyar Laed

has the length dimension and represents the width of the region which is a velocity pulsation
"supplier’.

To improve Green’s function we must take into account the turbulent diffusion of the
velocity fluctuations. Using these relations and determining the pulsational diffusion coefficient
by means of the eguality
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we may introducr the new Green function by means of the equation

L UVIV-yDW =y V= -8 (F=Ths 1)

Then the second approximation velocity pulsation formulae are

2 U; _
W@yl @ldvErlydarta
I xg

As above, the velosity fluctuations in the region not far from the wall equal

Gl Tl
*m j’u}( v Fhihar !

Using this expression the turbulent stress tensor components can be calculated

au
Slim 20 Yol dtul (7L v (7 7L g arlad (11)
2V 6 -V ]
Voo

llilu%

Since Green’s function is dependent on the difference r=t —t 1 only, relation (11) can be

written in the more convenient form

u} (r,vdt fu

The factor-v?;{(r—) - fwK.k(F r)dr is the component of the eddy diffusivity tensor. In the

Lagrange coordinate system the function v( ,7) approximately equals v~ e kr , where
L2 (v+D)
o2
32¢

, @ is constant, e is a characteristic dimension of the region.
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Then for homogeneous isotropic turbulence may be written as the eddy diffusivity of
momentum

. I 2 Fld@ul e = nekrdr (13)
* (o]

This expression correlates with Taylor's detemmination of the turbulent diffusion coefficient
[, 2].

Similarly using the equations for the temperature fluctuations

Tl 271 - (14)
T + Uk T +uk-¢-9—;k—a_—{ax + FEn (u}(T k
and introducing temperature Green's function by means of the equation

W,
at

+ (UV)Wy — AWy = —8(F =715t —1) (15)

we can obtain the integral equations for the temperature fluctuations in the following form

1 s Flod) ol 2T _ 8 1_11_11
T (¢ t)_fW( )["kaxk aXk(uT ukl)dr dt (16)

In the first approximation

THE 0= jul % W, (7, 7 Ly, har Lad a7

or with the same assumptions, which have been used in deriving of formula (5)
Tl(F,t) fu (w7, Fludhartal

32T
+
IXkIXe

fir -7 gk (7 L ebyw (7,7 L elar Laed

In the region not far from the wall

g T =ZE et e wihartad ZL Ty as)

where I{(?,t) is an analog of the mixing-length for the temperature pulsations. Just as in

equality (7) it can be approximately accounted for the turbulent diffusion of the temperature

puisations by means of introducing the turbulent diffusion coefficient
326
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u{(.]q _uk!d ’l‘l
0']‘1
dx)

nT _

Then new temperature Green's function is determined by the equation

W

[¢

sUVOW — vTyW —aAW-—s(F -7 D s -1t)

Then the temperature fluctuations

T, 0= fud (7w, 7Ly dadad
axg

The components of the turbulent heat flow vector can be defined by

;vp.ﬂfu(r dtfub(FLehw, 7Ly ) arlad

Vo0

cop- ulTl—ll

1

Since W is dependent on the difference r=t — t*,

1.1
uiT

1

T 1 v 1,-1 1laT Jat
_E—gdrllm z—vﬁ{u-(r ,t)dtfuk(r , t— T)W( tl)d IK k( )dr_akaxk

Voo

(23)

where

KL (7, A= b (7 DulFhe— w7l ndr!

The quantity al (F) < }OKT(F, 7)dr means the eddy diffusivity of heat.
o

The concrete form of Green's functions V and W is determined by a geometry considered.

In the simplest case when thedependence of the coefficients Eqs (8) and (20) upon the
coordinates can be assumed negligible. Green's function may be found through the useof
Fourier transformation.

Then Green's function for the velocity is given by

F-Fl_ue—th)2

1
V(F - - 1’ . tl) _ 1 . 4(V+D)(t-——t ) (24)

2 ﬂ(u + D)(t ---tl)3

| I)T

Green’s function for the temperature W is the same, but we must use respectively al

instead of v, D.
376
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The a approximation described above can be used to establish some semi-empirical methods
of the calculation of the turbulent flow characteristics. However, in practice it is convenient
to carry out the calculations using a more rough scheme.

Consider fully develop 2d flow in a circular tube. The equation for liquid motion is

2 .
Ew +vy dU _R¢  dp 2_2;& R (25)

d¢  p dz P

4

L
¢ d¢

With the eddy diffusivity considered as a known function of the coordinates, after double

integration we obtain

Using the common notations
vz .

*=.pv

we define

The friction factor ¢ is

The function -g = f(&, n,) being known, all flow characteristics may be calculated. A good
expression for vy has been proposed by Reihardt [3]
326
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=0.4 (-1l mlll), - = 1o (1 =€) (29)

According to this formula the eddy diffusivity of momentum v varies in the viscous layer
v .

as T ~y3 and for n >> 11 a ~0.47. Since in the turbulent core the velocity profile is
v v

described by the relation

¢ =25lng+ 5.5

the eddy diffusivity is to vary in the flow core as

So it is reasonably to ccrrect Reihardt’s relation and to determine the ratio of eddy and

molecular viscosity as

(1-¢)
—04[p—11 zhlll]f = 04lny (I — & —11th %11 1¢ (32)

o

v

The results of the velocity profile calculations based on Eqs (27) and (32) are given in Fig.1.
In Fig.2 the friction factor (isplotted as a function of the number Re.
The stabilized heat transfer coefficient calculation reduces to computation of the well-known
Lyon integral
L (fw@ede?
E(l+—) o

a

i)

V ~
.~ =Pr-
v a

a
v

°T .
vT

Assuming the turbulent Prandtl number equals to unity and using relation (32), the Nusselt
number has been calculated in the range 0 < Prg 100, 5.103 < Re < 106. The results of the
calculations are presented in Figs 3 and 4.

In the figures these results are compared with data {rom the existing approximate equations.
ltis seen from this comparison that the approximation of the turbulent viscosity by relation (32)
is satisfactory.
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3. LOCAL HEAT TRANSFER IN A REACTOR CHANNEL

As known, the heat transfer coefficient is dependent poorly upon a kind of the boundary
conditions. llowever, in the nuclear reactors, where heat generation changes essentially

it is necessary to take into account the effect of the axial heat flux variations on the heat
transfer coefficient.

Consider the heat transfer process in a circular tube. Let the heat flux q(z) change arbitrarily
along the channel. What heat flux variation rate can result in local heat transfer coefficient
and local temperature difference changes?

Consider at first the ideal case of the §-wise heat flux, i.c., the case when heat is gene-
rated in an infinitely small element of thechannel length. How the temperature profile will
be changed down the coolant flow?

Obviously, in the heat source influence area the liqud near-wall layers temperature is
much more than the flow core temperature. llowever, in time the liquid layers are mixing in
the channel and the temperature profile is flattening. The length at which temperature profile
flattening occurs characterizes the temperature profile development rate. Let the function
describing the temperature difference change along the channel is a heat flux influence func-
tion and note itas G (z).

Define the local temperature difference as
O
Ty-TleyUs==J q(zD)G(z = z1)dzl

Tw T
q(x)
C-yU

gl——= =J)’(l'(x1)G(x—-x1)dx1

f(xt) = i"l)
(

Ifthe heat fluxis &-wise, i.e., f(x) = 8(x), then

The function G(x) can be normalized so that f G(x)dx = A. It is characterized by the
relaxation length L = — f xG(x)dx and also by the high space moments x" =—A—f G(x) dx.
0
The influence function moments can be found by Fourier transformation,

32¢
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Let

G (p) = Fe'px(](x)dx'-‘-'f G(x)dx—p?x(}(x)dx +——p—fwx2G(x) dx — ... = A[l—pL+B— 2=
0 0 ) 2 % 2 .
(36)
Then N
G(x)dx = G(p)l po
(37)
dG ), .

426G
, X
dp p-0 2

1
—A———|P"0' etc.

L=_L
A dp

If a function f(x) changes poorly at distances of theorder of L, it can be expandedinto a

Taylor series and then

= To- = )JE f(xl)G(x ~xDdx! =°f°f(x—x1)G(X1)dX] ""'f(X)afaG(x)dX—ﬂ }OXG(X)dx to=
St(x) q(x oo o o dx o

cyU (38)

=Alf(x) — L-(E +...]=Af(x-L)
dx

Thus the local heat transfer coefficient is determined by the heat flux at the distance L up
the flow.

As we will see later, the factor A is theinverse Stanton number after full development
of the temperature profile.

In this connection

t(x)

1

Thus using the stabilized heat transfer coefficient, we underestimate the heat transfer
coefficient value when heat fiux increases and overestimate it when heat flux decreases along
a channel*, The last circumstance is essential for the water cooled reactors in which subcooled
boiling is possible at core outlet. Therefore the fuel element surface temperature estimations
and analysis of the subcooled boiling possibility performed in accordance with the usual heat
transfer relations may be appeared quite optimistic.

Surely, correctness of such estimations depends upon the rate ofhgzi:] H;? change along a

channel.If in expansion (38) the term [_rj—f( can be ueglected, i.e., L. T << 1, then the

heat flux nonuniformity effect on heat transfer coefficientis small. Otherwise, if relative heat
flux variations are small at distances about the relaxation length L, then this effect can be
ignored.

It isrequired to know the influence function G (x) to calculate the local heat transfer coef-
ficient for varying heat flux along a channel. The influence function G(x) can be determined

from the solution of the energy equation,

*It may be shown such a situation takes place in transient processes also, when g=const-f(t)
326
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This equation for liquid flowing in a circular tube is

1 9 ar, T U W gg aT
—f——é—ff(l*-——)——:—-ﬂa— “((f

and the boundary condition is

dT | q(x)

“dzlg TR (41)

The solution Eq. (40) can be determined by meansof the finite integral transformation over
the eigenfunctions of Sturm-Liouville’s equation
1 d ar

dy, -
TG £(1 .;.a_) ' + Brw )Y, =0 (42)

with the boundary condition dgn Il = 0. With the more general boundary condition
dyY, |
d¢ 17

1
Using the orthogonality of the function Y, i.e., the equalities [¢w (£)Y Y d{ = 0 with
0

zY, (1) more complex problems may be solved.

n # m, any function given in the interval [0.1] may be expandedinto the series

Y, 1
[ Ew(©)6(EXY () dé

o

0(&,x) =2
" few @ Yidg
fe) n

If to denote

~ 1
Op (§) = [ Ew () 0 (£, x) Y, (D)dE,
)
then the equality
Y, ()6, (x)

0(€.X)=>é -I———-——-?——
[ ew(@Y2e
o

may be considered as the conversing formula for the finite integral transformation.
Applying the integral transformation in the form of (44) to Eq. (40), i.e. multiplying the
equation by the function Y,(£) and then integrating it from zero to unity, we obtain the equation

-~

pe dTy q ()R 27
- =Y,(1) A - B T, (x), (46)

n

the solution of which is

()

~ 2 82(x_
T.-Y, (1)-- }‘q(x) Thea
326
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In accordance with Eq. (45) the temperature profile in the channel is determined by the series

2 2 1
Y (O Y (1) x —— B4 (x—x")
T(Ex) = 1__ R 9o fqa)e Pe " dxl (48)
oy Uy " fEw(O)Y2dE =
3 n
Near the surface the temperature difference is
- Y2 (1) —= g2(x—x!)
Ty-T e S;éo — Tt e pe i dxl, (49)
WD T w@y2ae
o
and the inverse Stanton number
2 o2 1
Ty—T Y2(1 - ~x1)
5;(1;) = qux) = )fc[z _I__“(_)___ e Pe Pl JrxLydxd (50)
B2 =m0 ) Y2 dg
cyU o n
Thus the heat flux influence function introduced before is
2 .2
Y2 -5 Byx
G(x)= £ 0 (D e Pefh (51)
nf0 I gw(f)Ygdf
o
Ifthe heat flux is constant, then the local Stanton number is
2 _2 52
L Pey G0 TRAY (52)
Bo [Ew(H)YEdE
o]
With x + = heat transfer is stabilized and
2
P Y
B LA n (53)
St(x) X=eo Sto 2 n 21 9
ﬂn [Ew(E) Yn d¢
)
Calculating the moments of the function G(x) from Eq. (37) it can be shown that
A=T Gldx —2 3 G 1 (54)
0 2 0 Sto

21 2
B[ Ew (Y2 dg
326 o
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0
Yi (1)
D1
n
. e BhSEw @YU
L =Sty fxGx)dx = — 2 (54)
0 2 Y2(1)
b
1
0 B2 1 ewle) Yide
o
Limiting expansion (36) by the first two terms, i.e.,
~ 1 1
Gl — — f- NS (55)
) St, (1 —pL) Sto 1+pL.
we have the approximate representation of the function G(x) in the form
X
G(x) =_}__ _1__ e T (56)

Sto L

It permits to calculate the local Stanton number for arbitraty heat {lux distribution through

the use of the relation

1 1 1 «x Ex
- .= 1 L 1
S0 TS T _ofo f(x') e dx (57)

In particular for q = const in the thermal stabilization region
X
r -1
_L.. = e—— (l —e L)

(58)

Stx) St
The data on the heat transfer in the entrance section of tubes should be presented just in such a
form. The thermal stabilization length may be considered as trebled relaxation length. It is

corresponding to that SS_: differs from unity by 5 per cent
o

For practical calculations of the local heat transfer coefficient in case of complex heat
flux distribution it is required to know the system of the eigenfunctions Y, (£). The calcula-
tions such the functions and their eigenvalues have becn performed usingthe code developed

by A.I.Kuleshov and E.D.Beljaeva for computer M-20. The eddy and molecular diffusivity of

a
heat ratio —55 Pr - 7T have been calculated using Eq. (32), and the velocity profile w(£)
v

have been calculated using Eq. (27). The resultsof the thermal stabilization length calculations
are given in Table 1.

326 T
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Thermal stabilization length values —al—- - %I,
Table 1
Pr=0.01 Pr = 0.025 Pr=1.0 _
Re 10% [5.10% |10° 10* | 105 10%
IT 2.43 ] 85 112.8 5.01 14.2 13.7

In Fig. 5 Subbotin’s experimental data [7] on heat transfer forliquid metalsin the entrance
section of tubes are compared with the resultsof the calculations. The thermal stabilization
length obtained from the experiments is in good agreement with the calculation.

The local Nusselt number is presented in Fig. 6 for the sinusoidal heat flux. It is seen that

for the decreasingpart of the sinusoid the number Nu is 20—40% less than the stabilized value.

4. FRICTION AND HEAT TRANSFER IN PARALLEL FLOW THROUGH BUNDLES OF RODS

Fuel assemblies of nuclear reactors are often made as bundles of cylindrical rods. Calcula-
tions of friction and heat transfer in such channels are usually performed with the use of the
relations obtained for flow in tubes. It is considered that the equivalent diameter defined as

4S . . .
dy, = 1T is adequate to account for a channel geometry. However, it has been shown in some
experimental studies [8] that the equivalent diameter isnot the universal parameter and does
not provide simple describingof experimental data for bundles of rods.

Therefore it is reasonable to camy out theoretical calculations of friction andheat transfer
in such a geometry,

For turbulent flow the full solution of the motion and energy equationscan be obtained only
numerically in such compoex geometry, Then some difficulties arise associated with the turbu-
lent flow characteristics uncertainty. Therefore itis advisable to perform the calculation ap-
proximately basing, however, on a reasonable description of turbulent flow properties.

By such an approximate calculational method may be well-known in neutron physics Wigner-
Seitz method in which a real lattice cell is replaced by some symmetric cylindrical one. It is
obvious that such an operation can be applied only to extend bundles when it may be neglected
by the azimuthal variations of shear stresses and the temperature difference over a rod perimeter.

In such a symmetrized geometry heat transfer calculations have been made for liquid metal flow
by Dwyer and Tee and also by Fridlander and Bonilla [9],
a) Friction factor of a bundle of rods.
Consider coolant flow in an annulus formed between the rod surface and the cell boundary.
After integrating twice of the motion equation (25) with using of the boundary conditions we
will have the velocity distribution over the annulus of the form. —
U - _RZ & }’ deg(l - £2)

(59
2z, T )

i

wher &,

326
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The mean velocity over the annulus

d
2 %P
_ 3 1 (1- 22 d¢

U= — [ v (60)
ou(l— £2) & £(1+ L)
v
The eddy viscosity given — the velocity profile and friction factor can be calculated.
8r -8
¢= - L =35 (61)
u-r b
g
where
SO m b (1-A%d¢
w  (1-&) (1-£2)2 &, £(1+ ir—)
v
. v« (R “'P) . . .
The quantity p, =———— is the characteristic parameter for turbulent flow in the

v
annulus. The Reynolds number calculated through the equivalent diameter is determined by

the relation

Ud, 20 1 (1-£2)%d¢

Re = = T
V1= el )
v

(62)

For laminar flow along a bundle of rods it can be made exact friction calculations. Butthese
calculations are very complicated. Using Eqs (60), (61) and assuming v =0

dp U yUz 1 yUz
- d = = 2 * o 2 - ( (63)
* R e 3 e, B Uy e 3 lng 2gdy
4y 2 2 1l gp 8 2 2 l-¢
where
64 2 3 1 N
C=-—’———'.X=—f—-(—€—-—————u—f), (64)
Uy (1-¢2 2 2 1—¢
— dp x
1g
€ = n"p2 = §2
#R2 °

Let the quantity dj, - x = dg be the effective diameter. With such a characteristic diameter
definition the bundle friction law coincides with friction law for tubes, i.e.

326
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(- M B (65)

Re: x Re,

When ¢ - 1, x = -g- and ¢ —»%9- as for a plane flat duct.
e

It is required to know the eddy viscosity variation law over a channel section to calculate
the [riction factor of a bundle of rods. It may be assumed that the eddy viscosity distribution
for a bundle of rods is described by the relation of the form

YT f“(o Mo (f‘fo) 1"5
—_ = 0, - h 66
- 4{710 1= 11t ll(l—go)J ¢, (66)

Using relations (61) and (63) itmay be calculated the friction factor ¢ as a function of the
Reynolds number and the lattice density ¢. The results of the calculations are shown in Fig. 7.
It may be seen that the coefficient ¢ is not a simple function of the number Re, as it has

been obtained from experiments.

If the Reynolds number is defined through the effective diameter

Re, = Re - x (67)

then the exfoliation of the dependence ¢ = f(Re) with respect to the parameter ¢ decreases
essentially (Fig. 7). These results permit to conclude that the effective diameter is a better
geometrical characteristic of a bundle of rods than the equivalent diameter. However, it is true
ofthe wide bundles only.

b) The heat transfer coefficient for parallel flow through a bundle of rods.

The equivalent cell method may be also used to calculate heat transfer in bundles of rods.
The energy equation (40) integrating with the corresponding boundary conditions over the
annulus, the expression for the Nusselt number will be found

1 262 1 d¢

1
Na (fEw(Ode)2 (68)

1-P &, ¢a+p])

Heat transfer calculations for a bundle of rods are performed usingthe velocity profile

determined Eq. (59) and the eddy viscosity Eq. (66). ——
The results of the calculations are presented in Figs 8,9,10. The Nusselt number calculated

through the equivalent diameter is not a simple function of the Reynolds number as is the fric-

tion factor ¢,

If the effective diameter isintroduced, then the exfoliation of the dependences

Nu={(Re), St=f(Re) —
decreases essentially. For this the data calculated are scattered by 10~15% from the criterial
relationship obtained for ducts. This result shows also that processing of data on heat transfer
in %)grédles of rods should be made using the effective diameter and not the equivalent diameter,

— ~15 - @
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NOMENCLATURE

a — molecular diffusivity of heat
p — pressure
|l — heat transfer perimeter
R — tube radius, cell radius
u(r, t)=U+ul — flow velocity
™r,t) =T + rl ~ temperature
S — cross-sectional flow area
t, r — time
X,¥,2 — coordinates
y — specific weaght
8(T) — delta-function
n ~ viscosity
P — liquid density, radius of rod
v — kinematic viscosity
£ — dimensionle ss radial coordinate
e=(-§ )2 — "’density” of lattice of rods

=¥ —~ dimensionless distance from the wall
¢ — fricrion factor
r — shear siress

Nu, Re, St, Pe, Pr — Nusselt, Reynolds, Stanton, Pecle, Prandtl numbers

INDEXES
w ~ wall
T — turbulent
o — stabilized value e
1_ pulsational component
- (dash) — notation of averaging
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FI1G.1. LIQUID VELOCITY PROFILE IN A TUBE
1 —Re-=104;2—Re=:105; 3—Approximation:¢=q n<s
¢ =5lnp— 305 5<5<30 d=25lan+55 n>30
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FIG.2. FRICTION FACTOR ¢ AS A FUNCTION OF THE REYNOLDS
NUMBERIN A TUBE

| — Calculation using Eqs (27, 28, 32); 2 — ¢ = 23184

Re0-25

and

1

326 ¢ - 2
(1.821gRe — 1.64)

~17 -

N .

Approved For Release 2009/08/17 : CIA-RDP88-00904R000100100027-1




Approved F_,?,_'; Release 2009/08/17 : CIA-RDP88-00904R000100100027-1
o

AT
] 74 |
//

/7

‘ o L] L] 1| &
FIG.3. FUNCTION Nu = f(Re, Pr) WITH Pr>1 FOR

LIQUID FLOW IN TUBES

1 —Pr=100; 2 - Pr=10;3 -~ Pr =1.0; xNu=0.023
Re0-8 Pr0-4 [4] ; V Nu=0.021 Re0.8 Pr0.43 5]

o Nu = Re ' Pr [6]
4.5(Pr?é -1) 2
—————————  + 1.07]{1 82lgRe — 1.G4)
1.821gRe -1.64
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R FIG.4. FUNCTION Nu = f(Pe) FOR LIQUID METAL FLOW IN
TUBES

1 - Nu =7+0.025 Pe?-8; 2. Nu= 5.5 +0.025 Pe9'8; V Pr=0.005;

x Pr=0.01; oPr=0.025 A Pr=0.05
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FIG.7. FUNCTIONS { =f(Re) AND ¢ = f(Re,) FOR A BUNDLE

OF RODS
1. o-¢=0.1 3.‘[}\— e = 0.4
2, —0— — =02 0 -¢ =05
g — =03 4.0 — ¢ = 0.6
1
5. =
(1.821gRe — 1.64) 2
Poiants at left relate to Re, = Re-f
U dy 2¢ P 3 Jne p2
Re:————',x= — = - — ], €= —
v (1-92 2 2 1—¢ r2

p — rod radius, R — cell radius
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FIG.5. COMPARISON OF CALCULATIONAL AND EXPERIMENTAL DATA

ON HEAT TRANSFER FOR LIQUID METAL FLOW IN THE ENTRANCE SEC-
TION OF TUBES

Experiment [7] o Pe = 500; A Pe = 1000; Calculation:1 — Re = 9.67.103

Pr= 0.01; 2 — Re = 9.67.10% Pr=0.025; 3 — Re =5 - 104 Pr=0.01;

4~ Re =103 Pr=0.01; 5 — Re =10%; Pr=0.025;

20

7

{5

B

Qz a4 06 o8 10 _;

Nu
FIG.G.-&-—‘ AS A FUNCTION OF RELATIVE CHANNEL LENGTH FOR
Yp

SINUSOIDAL HEAT FLUX. Re = 10%, Pr = 1.0,

= 50
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FIG.8. HEAT TRANSFER CALCULATION FOR PARALLEL
FLOW THROUGH A BUNDLE OF RODS FOR Pr = 1.0

1.0 — ¢ = 0.1 3.0 — ¢=04
2.-0— - ¢ = 0.2 4*\~c=g-g
- ¢ =0. .p - €= 0
T s - e 3 Q- €= 07 _]
. 5. St = ?
: 12.7 \/?é (szé-l)+1.o7
1
l=

(1.821gRe — 1.64)
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FIG.9. FUNCTION Nu = f(Pe) WITH Pr = 0.01 FOR PARALLEL
LIQUID METAL FLOW THROUGH A BUNDLE OF RODS

1. ¢ = 0.1 4. € = 06
2. ¢ = 0.2
3. €= 0.4 5. Nu =7 + 0.025 Pe0-8
Numbers Nu and Pe are calculated through equivalent diameter
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FIG.10. FUNCTION Nu, = f(Re,) FOR PARALLEL LIQUID
METAL FLOW OVER A BUNDLE OF RODS
—0~ ~ Pr = 0.005 o - Pr = 0.01 A - Pr = 0.025 a
x - Pr=005 1. ¢ = 0.1 2. ¢ = 0.2 3.¢= 0.4
4. ¢ = 0.6 S. Nuc = 7+ 0.025 Peg's N!.le = Nu- f

Pec =Pe-f
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